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Nonlinear Jaynes–Cummings Model
of Atom–Field Interaction

S. Sivakumar1

Interaction of a two-level atom with a single mode of electromagnetic field including
Kerr nonlinearity for the field and intensity-dependent atom-field coupling is discussed.
The Hamiltonian for the atom-field system is written in terms of the generators of a
closed algebra, which has SU(1,1) and Heisenberg–Weyl algebras as limiting cases.
Eigenstates and eigenvalues of the Hamiltonian are constructed. With the field being in
a coherent state initially, the dynamical behavior of atomic inversion, field statistics, and
uncertainties in the field quadratures are studied. Appearance of nonclassical features
during the evolution of the field is shown. Further, we explore the overlap of initial and
time-evolved field states.
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1. INTRODUCTION

Interaction of a two-level atom with a single mode of electromagnetic field
is the simplest problem in matter–radiation coupling. A model for the interaction,
introduced by Jaynes and Cummings (1963), treats the atom as a dipole placed in
an external field. The Jaynes–Cummings (JC) model has provided a lot of impetus
for theoretical explorations and experimental verifications (Brune et al., 1987;
Gentile et al., 1989; Kozierowski and Chumakov, 2001; Shore and Knight, 1993;
Walther, 1993). The Hamiltonian for the model is

HJC = H0 + g(â†σ− + âσ+). (1)

Here H0, the Hamiltonian for the atom and field in the absence of interaction,
is the sum of energy operators for the field and atom given by ωâ†â + 1

2νσz .
The atomic transition frequency is ν, the field frequency is ω, and g is the
coupling constant. We denote the creation operator by â†, annihilation opera-
tor by â for the field quanta, and their action on the basis states of the harmonic
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oscillator are

â|n〉 = √
n|n − 1〉, (2)

â|0〉 = 0, (3)

â†|n〉 = √
n + 1|n + 1〉. (4)

The atom has two levels, |g〉 and |e〉, the ground and excited states. The operators
σz , σ+, and σ− act on the states as given below:

σz|g〉 = −|g〉, (5)

σz|e〉 = |e〉, (6)

σ±|g〉 = 1 ± 1

2
|e〉, (7)

σ±|e〉 = 1 ∓ 1

2
|g〉. (8)

It is noted that the operator ν
2 σz is the energy operator for the two-level atom.

Atomic inversion, defined as the difference in probabilities for the atom to be
in the excited and ground states, as predicted by JC model is a sum of quasiperi-
odic functions with incommensurate frequencies. The model predicts collapses
and revivals and ringing revivals in the time-development of atomic inversion
(Cummings, 1965; Meystre and Quattropani, 1975; Stenholm, 1973). Analytical
evaluation of the time required for the first collapse and subsequent revival was
done in Eberly et al., 1983. If the photon-number distribution is osicllatory, as in
the case of squeezed vacuum, it is echoed in the “ringing revival” structures of the
atomic inversion (Venkata Satyanarayna et al., 1989). The revival phenomenon is
entirely quantal, and hence the model is very important in experimental verification
of the predictions of quantum theory. Although the model is based on simple as-
sumptions regarding the matter–radiation interaction, it has been extensively used
to study a variety of phenomena like trapping of atoms (Li et al., 1998), electro-
magnetically induced transparency and enhancement of refractive index (Scully
and Zubairy, 1997), mechanical action of light on atoms (Kazantsev et al., 1990),
etc. Further, the model has been generalized in many ways. We list the respective
Hamiltonian for some of the extensions:

1) Buck-Sukumar model (Buck and Sukumar, 1981)

HIC = H0 + g(
√

â†ââσ+ + â†√â†âσ−) (9)

With this particular form of intensity-dependent coupling the atomic-
inversion is a sum of periodic functions, to be precise, the discrete Fourier
transform of the photon number distribution. This model is very interest-
ing as it can be written as a combination of generators of SU(1,1) algebra
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(Buzek, 1989). Generalization to two-photon case, where two photons are
absorbed or emitted in atom–field interactions, has been done. Once again
the SU(1,1) algebraic structure in the model is used to solve the problem
(Gerry, 1988).

2) Kerr nonlinearity (Gora and Jedrzejek, 1992; Joshi and Puri, 1992; Werner
and Risken, 1991)

HKerr = HJC + χ â†2â2 (10)

This is an effective Hamiltonian for a system in which the electromagnetic
field mode is excited in a Kerr medium. The medium is modeled as an
anharmonic oscillator (Agarwal and Puri, 1989; Yurke and Stoler, 1986).

3) Dicke–Tavis–Cummings model (Dicke, 1954; Tavis and Cummings, 1968)
In this model, the interaction between field and a group of two-level atoms
is considered and the Hamiltonian is

HDTC = ωâ†â + ν

2

∑
i

σi,z + Interaction part. (11)

Generalization of the model to include multimode field configurations has
been studied in Abdel-Hafez and Ahmad (1987).

4) Nonlinear Jaynes–Cummings model

On including the motion of atom in the external field, the coupling is made
position dependent. This offers enormous possibilities to tailor the form of atom–
field interaction. The general form for the Hamiltonian is

HNL = H0 + g( f (â†â)am + adjoint) (12)

Here f (â†â) is an operator-valued function of the number operator â†â and
m is an integer. Supersymmetric technique to solve multiphoton nonlinear Jaynes–
Cummings model are explored in Song and Fan (2002).

One way of realizing nonlinear JC hamiltonians is to consider atomic systems
with vibrational sidebands (Lie and Wang, 1996; Vogel and de Matos Filho, 1995).
The atom interacts with two external fields which are treated classically. The center-
of-mass motion (also referred as external degree of freedom) of the atom trapped
in a cavity is coupled to its internal degrees of freedom, namely, the vibrational
sidebands. The spatial structure of the cavity field determines the form for the
function f (â†â). By proper choice of cavity mode structure, it is possible to design
arbitrary atom–field couplings.

Another way to arrive at atom–field coupling, which has polynomial depen-
dence on the photon number, is to use many lasers with different phases and Rabi
frequencies to interact with a trapped ion with vibrational sidebands. The number
of lasers required is same as the order of the polynomial. It has been shown that
once the function f (n), considered to be a polynomial, is specified, the required
phases and the Rabi frequencies of the external lasers are determined (de Matos
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Filo and Vogel, 1998). A more realistic case is to consider the interaction of the
trapped atom with environment. It has been shown that by varying laser frequen-
cies and their intensities it is possible to engineer the atom–environment coupling
too (Poyatos et al., 1996). The coupling comes about due to the absorption of a
laser photon and subsequent spontaneous emission.

With the technology advancement in trapping and availability of lasers, tailor-
ing the atom–field interaction is possible. In the case of laser cooled, trapped ions
the effect of dissipation can be made negligible for sufficiently long times so that
experimentation is possible. In this context, we study the dynamics of a two-level
atom interacting with a single mode of electromagnetic field. The interaction is
governed by the Hamiltonian

H = ω
[
â†â + r

2
σz

]
+ χ â†2â2 + gω(

√
1 + kâ†ââσ+ + â†

√
1 + kâ†âσ−).

(13)
This Hamiltonian is an example for nonlinear JC model including Kerr term.

The time evolution of atom–field system governed by the Hamiltonian is exactly
solvable. Note that we have scaled the coupling constant g by ω. The parameter
r is ν

ω
and the coupling constant for the Kerr term is χ = kω. This will simplify

the expressions we derive in sequel. In particular, we set ω = 1 which amounts
to studying a new Hamiltonian H

ω
. The speciality of the Hamiltonian H is that

it becomes HJC when the parameter k is set equal to zero. Further, the usual
Holstein–Primakoff realization is obtained when k = 1, so that the interaction is
approximately given by g(

√
â†ââ+ + adjoint), which is same as the interaction

studied in Buzek (1989). Yet another form of interaction occurs when k � 1. If
the photon number distribution is such that kn � 1 for all n under the peak of the
distribution, then Eq. (13) leads to

H → ω[â†â + kâ†2â2 + g[(1 + kâ†â/2)âσ+ + adjoint]]. (14)

The coupling given here, and the one including the next higher term propor-
tional to â†ââ†â, are realizable with four lasers interacting with a trapped two-level
atom (de Matos Filo and Vogel, 1998). Further, when k � 1 so that we can neglect
kn in comparison to unity but retain kn2, we arrive at HJC with an additional Kerr
term. This system has been studied in Bernat and Jex (1992). Many well-studied
systems are thus special cases of the Hamiltonian considered for discussion in
the present paper. The organization of the paper is as follows. In Section 2 we
study the algebraic aspects of the Hamiltonian and construct the eigenvectors and
eigenvalues. Section 3 is devoted to study the atomic inversion, and approximate
expressions are obtained for first collapse and revival periods when the field is in
a coherent state. The time-development of field statistics is discussed in Section 4
and the results are summarized in Section 5.
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2. MODEL HAMILTONIAN AND ITS PROPERTIES

In this section we study the algebraic aspects of the generalized Hamiltonian
given in Eq. (13). We introduce a set of operators which are closed under com-
mutation. This algebraic structure is exploited to determine the time-evolution
operator to evolve the initial state of the atom–field system. The eigenvalues and
the corresponding eigenvectors are constructed.

2.1. Eigenvalues and Eigenvectors

The Hamiltonian given in Eq. (13) is written as

H = ωK+K− + ν

2
σz + g(K+σ− + K−σ+), (15)

wherein we have set K− = √
1 + kâ†ââ and K+ = â†√1 + kâ†â. Further, we

assume that k is nonnegative and restricted to take values less than or equal to
unity. Formally, the Hamiltonian H has the same structure as HJC with â and â†

replaced by K− and K+. However, the former corresponds to Kerr-type medium
with intensity-dependent coupling for atom–field interaction. The difference is
very clear in the commutation relations among the operators. From the realization
of K− and K+ in terms of â† and â, we arrive at

[K−, K+] = 2K0,

(16)
[K0, K±] = ±kK±.

The operator K0 is kâ†â + 1
2 . Thus, the operators K−, K+, and K0 form a closed

algebra. It is worth noting that the commutation relations define the SU(1,1) algebra
when k = 1. On the other hand, to get the well-known Heisenberg–Weyl algebra
generated by â†, â, and the identity I we set k = 0. Two different algebras are
realized depending on the value of k and hence the algebra of K−, K+, and K0

is said to be an “interpolating algebra.” An invariant operator, which commutes
with K± and K0, for the algebra is given by K 2

0 − (k/2)(K−K+ + K+K−). The
coherent states corresponding to this algebra and their Hilbert space properties are
known (Sivakumar, 2002).

The atom–field evolution is studied in the space of |e, n〉 and |g, n〉, where n =
0, 1, 2, . . .. The state |e, n〉means that the atom is in the excited state |e〉 and the field
in the nth excited state |n〉. The states |e, n〉 and |g, n〉 are eigenstates of ωK+K− +
ν
2 σz and the respective eigenvalues are εe,n = (n + kn2 − kn)ω + ν

2 and εg,n =
(n + kn2 − kn)ω − ν

2 . The Hamiltonian H admits a constant of motion N such
that the commutator [N , H ] vanishes. Explicitly, N = K+K− + 2K0σ+σ−. Note
that when k = 0, N becomes â†â + σ+σ−, the constant of motion for HJC.

The interaction part of H is such that the state |e, n〉 is taken to |g, n + 1〉 and
vice versa, during the evolution of the atom–field system. Thus, the entire Hilbert
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space is split into subspaces spanned by |e, n〉 and |g, n + 1〉 and the dynamics
confined to individual subspaces. In one such subspace, specified by the value of
n, the Hamiltonian matrix is

H =




(
n + 1

2
+ kn2 − kn

)
ω + 	/2 g

√
(1 + kn)(1 + n)

g
√

(1 + kn)(1 + n)

(
n + 1

2
+ kn2 + kn

)
ω − 	/2


 .

(17)
The detuning parameter 	 is (r − 1)ω. The eigenvalues of the Hamiltonian

are

E±,n =
(

kn2 + n + 1

2

)
ω ± 1

2

√
(	 − 2kωn)2 + 4g2ω2(1 + kn)(1 + n). (18)

and the corresponding eigenvectors are

|+, n〉 = cos θn|e, n〉 + sin θn|g, n + 1〉, (19)

|−, n〉 = sin θn|e, n〉 − cos θn|g, n + 1〉. (20)

The expansion coefficients are

cos θn = 2gω
√

(1 + n)(1 + kn)√
(�n − 	n)2 + 4g2ω2(1 + n)(1 + kn)

(21)

sin θn = �n − 	n√
(�n − 	n)2 + 4g2ω2(1 + n)(1 + kn)

, (22)

in which we have set 	n = 	 − 2knω and �n = √
	2

n + 4g2ω2(1 + n)(1 + kn).
The energy difference between the levels E+,n and E−,n is√

	n + 4g2ω2(1 + kn)(1 + n). The minimum of the separation occurs when 	

equals 2knω and the corresponding difference is 2gω
√

(1 + kn)(1 + n). In Fig. 1
we have plotted the energy eigenvalues E+ and E− as a function of 	. The dashed
lines represent the eigenvalues when g = 0, i.e., εe(g),n . In this case the eigenvalues
cross each other as 	 increases from negative to positive values. The continuous
lines represent the energy eigenvalues for g = 10−3. The diverging eigenvalue sep-
aration beyond the minimum separation indicates “level repulsion” in the eigen-
values of the dressed atom. The effect of nonzero k is to shift the value of 	 at
which the minimum separation or the crossing occurs. If k = 0, the minimum as
well as the crossing occur at 	 = 0.
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Fig. 1. Dependence of eigenvalues E+ and E− on detuning 	. The continuous curve corresponds
to g = 0.1 and the dashed curve corresponds to g = 0. Here k = .1 and n̄ = 30. The dashed curves
with positive and negative slopes correspond respectively to εe,n and εg,n . Lower part of the figure
is for n = 1 and upper part for n = 2.

2.2. Evolution of Atom–Field State

To understand the dynamics of the atom–field system, we solve for the state
of the system in interaction picture, where the evolution equation is

i
∂|ψ〉
∂t

= Ṽ |ψ〉. (23)

Here Ṽ is the transformed interaction given by

Ṽ = g exp
[
i t

(
ωK+K− + ν

2
σz

)]
(σ−K+ + σ+K−) exp

[
−i t

(
ωK+K− + ν

2
σz

)]
.

(24)
The effect of the transformation on the interaction term is obtained from the fol-
lowing results:

exp(i tωK+K−)K+ exp(−i tωK+K−) = K+ exp(i tωK0), (25)
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exp

(
i tν

2
σz

)
σ− exp

(
− i tν

2
σz

)
= exp(−i tν)σ−, (26)

and their adjoints. Note that the ordering of operators should be maintained in
the rhs of the first of the results. Using these relations, the interaction picture
Hamiltonian is written as

Ṽ = g(K+σ−exp[i t(2ωK0 − ν)] + adjoint. (27)

At any time t , let the state of the atom–field system be represented as

|ψ(t)〉 =
∞∑

n=0

Ce,n(t)|e, n〉 + Cg,n(t)|g, n〉. (28)

The coefficients Ce,n(t) and Cg,n(t), determined in terms of their initial values by
the evolution equation Eq. (23), are

exp

(−i	nt

2

)
Ce,n(t) =

[
cos

(
�nt

2

)
− i	n

�n
sin

(
�nt

2

)]
Ce,n(0)

− 2igω
√

(n + 1)(1 + kn)

�n
sin

(
�nt

2

)
Cg,n+1(0) (29)

exp

(
i	nt

2

)
Cg,n+1(t) =

[
cos

(
�nt

2

)
− i	n

�n
sin

(
�nt

2

)]
Cg,n+1(0)

− 2igω
√

(n + 1)(1 + kn)

�n
sin

(
�nt

2

)
Ce,n(0). (30)

The Rabi frequency �n is
√

	2
n + 4g2ω2(1 + kn)(1 + n). The dependence

of �n on n such that there is a minimum value for the Rabi frequency when n
satisfies 	 = 2knω + g2ω2(1 + k + 2kn)(kω)−1, provided k �= 0. The variation
of �n with respect to n is shown in Fig. 2. In the case of HJC, the Rabi frequency
varies linearly with n and hence there is no minimum. The existence of a minimum
Rabi frequency has important consequences for the dynamics of atomic inversion,
squeezing, photon statistics, etc. and they are discussed in the following sections.

Let the Rabi frequency attain its minimum for some specific value of n,
denoted by n̄. Therefore, we have

	 = 	c = 2kωn̄ + g2ω2(1 + k + n̄)

kω
. (31)

The n dependence of Rabi frequency, for values of n close to n̄, is obtained by
Taylor expanding �n around n̄, up to second order. The resultant expression is

�n = �n̄ + 2(n − n̄)2(k2ω2 + kg2ω2)

�n̄
(32)
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Fig. 2. Variation of �n with n. We have set g = 10−3, k = 10−4, n̄ = 30, and 	 = 0.016061. The
approximate and actual Rabi frequencies are compared in the upper figure. Dotted line corresponds to
the approximate expression in Eq. (32) and continuous curve corresponds to exact expression. Values
of k, g, n̄, and 	 are 10−4, 10−3, 30, and 0.016061, respectively. The bottom curve shows the photon
number distribution for the coherent state |α = √

30〉.

In Fig. 2 the values predicted by the approximate expression for �n are compared
with those of the exact expression. It is clear that for the chosen values of g, k, and
n̄, the values match very well for those values of n under the peak of the photon
number distribution. Quantitatively, the fractional difference is less than 3%.

3. EVOLUTION OF ATOMIC INVERSION

In the previous section we constructed the complete state of the atom–field
system in the dressed atom basis in interaction picture. The state |φ(t)〉 in the
Schrödinger picture is easily obtained by premultiplying the interaction picture
state function |ψ(t)〉 by exp(i(K−K+ + ν/2)t). In this section, we study the tem-
poral evolution of atomic inversion.

The time-dependent state vector |ψ(t)〉 of the system is determined com-
pletely once the coefficients Ce,n(t) and Cg,n(t) are known, which, in turn, are
specified by their initial values. For instance, if the atom is initially in the excited
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state, we have Cg,n(0) = 0 and Ce,n(0) = 〈n|ψ(0)〉. The probability that the atom

is in the excited state, irrespective of the state of the field, is
∑∞

n=0 Pn

∣∣Ce,n(t)
∣∣2

and

to be in the ground state is
∑∞

n=0 Pn

∣∣Cg,n(t)
∣∣2

. The photon number distribution of
the field is Pn . The difference of these two probabilities is atomic inversion. For
the specified initial condition, namely, the atom is initially in the excited state, the
atomic inversion W (t) is

W (t) = 1 +
∞∑

n=0

Pn

[
4g2ω2(1 + n)(1 + kn)

�2
n

(cos(�nt) − 1)

]
, (33)

and time-dependent part of W (t)is

WT (t) = 4g2ω2
∞∑

n=0

Pn
(1 + n)(1 + kn)

�2
n

cos(�nt). (34)

The quantity WT exhibits rich structure in its evolution. It exhibits collapse and
revivals when the initial photon distribution is taken to be a Poissonian distribution
of mean photon number n̄, which corresponds to the field being in a coherent
state

∣∣√n̄
〉
. The photon number distribution for the state is Pn = exp(−n̄) n̄n

n! . This
distribution has a single peak and the standard deviation is n̄. Hence, the major
contribution to the sum in Eq. (34) comes from a few terms with n around the
peak. With this choice of Pn , we have plotted in Fig. 3(a) the evolution of WT

as a function of time. The time required for the first collapse and the following
revival, denoted by TC and TR , respectively, can be estimated approximately. For
the revival to occur, the terms corresponding to those n around the peak, should
be in phase. Thus, we require TR(�n̄+1 − �n̄) be equal to 2π . The difference of
the nearest-neighbor Rabi frequencies is

�n̄+1 − �n̄ = 2An̄ + A + B

2�n̄
. (35)

The constants A and B are 4(k2ω2 + kg2ω2) and 4(g2ω2 + kg2ω2 − 	kω), re-
spectively. The revival time TR is 4π�n̄

2An̄+A+B .
For the inversion to collapse, the terms in the sum on the r.h.s. of Eq. (34)

should be uncorrelated. Since the width of a Possionian distribution is where the
probability Pn is appreciable, the condition for collapse is written as TC (�n̄+√

n̄ −
�n̄−√

n̄) = 1. If n̄ is large, the expression for TC is TR

4π
√

n̄
.

The function WT exhibits rich features when detuning is close to 	c. In Fig. 3.
we have shown the behavior of WT for three different values of 	. The values for
the parameters are g = 10−3, k = 10−4, ω = 1, n̄ = 30 and the corresponding 	c

is 0.01606. The values are so chosen that the Rabi frequency attains its minimum
when n is near n̄, the average photon number. The evolution of WT with 	 = .01 <
	c is shown as the top most figure, marked (a) in Figure 3. Figure 3(b) corresponds
to 	 = 	c and the one marked (c) is for 	 = .22 > 	c. The envelope of WT when
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Fig. 3. Time-dependent part of atomic inversion. Case (a) corresponds to 	 = 0.01 < 	c . Case (b) is
for 	 = 	c = 0.016061 and Case (c) refers to 	 = 0.022 > 	c . Here Case (b) shows 1 + WT and
Case (c) shows 2 + WT .

detuning equals 	c is distinct with structures repeating without much distortion.
This should be compared with the top and bottom figures, which correspond to
	 �= 	c, which exhibit random oscillations and do not have neat envelope.

The origin of these structures in the inversion is the Kerr term in the Hamilto-
nian and not the intensity-dependent coupling. To explain this fact, we consider the
Hamiltonian H − χ â†2â2 and the Rabi frequency is

√
	 + 4g2(1 + kn)(1 + n).

This exhibits no minimum as 	 is independent of n, so there is no occurrence of
superstructures in the evolution of atomic inversion. When k = 1 and 	 is zero,
the inversion is composed of periodic fucntions and the results are exactly those of
Buck and Sukumar (1981). For other values of k, including k = 0, the expression
for atomic inversion involves terms of incommensurate frequencies. As a conse-
quence the collapse and revivals are not periodic. In the case of the Hamiltonian
H , the effect of k-dependent nonlinear coupling is to shift the minimum of Rabi
frequency by 2kn̄ω.

As noted in Section 2, SU(1,1) algebra is realized in terms of K± and K0 when
k = 1. If we consider resonant interaction (r = 1), then WT can be estimated
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approximately for the SU(1,1) case. The field is taken to be in a coherent state
|α〉 such that |α| = √

n̄ � 1. We use (1 + n)(1 + kn) ≈2 and g2 � 1 to arrive at
�n = 2nω. With these approximations, we arrive at

WT = g2 exp(n̄(cos(ωt) − 1)) cos(n̄ sin(ωt)), (36)

in which we have used (1 + n)(1 + kn) ≈ �2
n . The magnitude of WT is negligible

in this case and so there is no perceptible collapse or revival. This is due to the
presence of Kerr term and the fact that it dominates over â†â in the Hamiltonian.
However, we point out that collapses and revivals are present in WT if χ � ω.

4. DYNAMICS OF FIELD PROPERTIES

In the previous section, we studied the dynamics of the two-level atom, in
particular, the atomic inversion. In the present section, we explore the temporal
behavior of field statistics and field amplitudes. As in the previous section, the
field is initially in a coherent state of complex amplitude α and the atom is taken
to be in its excited state. With these initial conditions, the probability distribution
of photons at time t is

P(n, t) = |Ce,n(t)|2 + |Cg,n(t)|2

= Pn

2

[
1 + 	2

n

�2
n

+ 4g2ω2(1 + n)(1 + kn)

�2
n

cos(�nt)

]
(37)

Coherent states are the wavepackets whose behavior is closest to that of a classical
particle and hence are called classical states. Nevertheless, during their evolution
in time the states may not be classical. The photon statistics of coherent states
is Poissonian. Any deviation from this behavior is characterized by Mandel’s Q
parameter defined as 〈â†ââ†â〉−〈â†â〉2

〈â†â〉 . Using the time-dependent probability distri-
bution P(n, t), the expectation values in the expression for Q parameter are

Q =
∑∞

n=0 n2 P(n, t) − [ ∑∞
n=0 P(n, t)n

]2

∑∞
n=0 P(n, t)n

(38)

For coherent states, Q is unity. Any value of Q less than unity is nonclassical.
In Fig. 4 the time evolution of Q parameter for an initially coherent state and
	 = 0.01 < 	c is given. The emergence of nonclassical behavior (Q < 1) is seen.
Although not shown in figure, we point out that for 	 = 	c = 0.016061, the
statistics does not become sub-Poissonian. When k = 1 and 	 = 0, the time-
dependent part of P(n, t) is of negligible magnitude and so Q does not evolve in
time.
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Fig. 4. Time variation of (δX )2, as the atom–field system evolves. The evolution is shown for
three values of detuning, 0.01 (continuous), 0.016061 (dotted) and 0.02 (dashed). Instants of
(δX )2 less than 0.5 correspond to squeezing in X quadrature.

4.1. Squeezing

We define the field amplitudes to be

X (t) = â†(t) + â(t)√
2

, (39)

Y (t) = i
â†(t) + â(t)√

2
. (40)

These amplitudes satisfy the commutation relation [X, Y ] = i and hence they
satisfy (δX )(δY ) ≥ 1/2. The symbol (δX ) stands for the expression

√
〈X2〉 − 〈X〉2,

the variance in X for a given field state. For coherent states of any amplitude α,
variances in X and Y are the same and equal to 1/

√
2. A state is nonclassical if (δX )

is less than 1/2, the coherent state value. Using the time-dependent state function
given in Eq. (29), the variances in the field amplitudes are given by

(δX )2 = 1

2
[1 + 〈2â†â + â†2 + â2〉 − 〈â〉2 − 〈â†〉2 − 2〈â†〉〈â〉], (41)
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and

(δY )2 = 1

2
[1 + 〈2â†â − â†2 − â2〉 + 〈â〉2 + 〈â†〉2 − 2〈â†〉〈â〉]. (42)

The expectation values of various operators in these expressions are

〈â〉 =
∞∑

n=0

√
n + 1[C∗

e,nCe,n+1 + C∗
g,nCg,n+1], (43)

〈â2〉 =
∞∑

n=0

√
(n + 1)(1 + kn)[C∗

e,nCe,n+2 + C∗
g,nCg,n+2], (44)

and

〈â†â〉 =
∞∑

n=0

n[C∗
e,nCe,n + C∗

g,nCg,n]. (45)

The expectation values 〈â†〉 and 〈â†2〉 are the complex conjugates of 〈â〉 and 〈â2〉,
respectively.

The evolution of δX is shown in Fig. 5. As the field evolves in time, the
variance in X falls below 0.5 indicating that the quadrature exhibits squeezing. As

Fig. 5. Mandel’s Q parameter as a function of time. Instants of Q < 1 correspond to sub-
Poissonian statistics. Values of g, k and n̄ are same as in Fig. 2 and 	 = 0.01.
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a consequence of uncertainty relation, the Y quadrature does not show squeezing.
However, when we set α = i

√
30, the situation is reversed. In this case, squeezing

is possible in Y and not in X .

4.2. Overlap of Initial and Time-Evolved States

A quantity of interest is the overlap of the state of the atom–field at time t
and that at t = 0. With the same initial conditions for the atom–field state as in the
previous section, the overlap is

|〈ψ(0)|ψ(t)〉|2 = exp(− |α|2)

∣∣∣∣∣
∞∑

n=0

|α|2n

n!

[
cos

(
�nt

2

)
+ i

	n

�n
sin

(
�nt

2

)]∣∣∣∣∣
2

.

(46)
The numerical value of the overlap lies between zero and unity. It is seen from Fig. 6
that the overlap becomes zero at longer times. In other words, the time-evolved state
is almost orthogonal to initial state. For short durations, an approximate expression

Fig. 6. Overlap of initial and time-evolved field states. Y-axis corresponds to |〈ψ(0)|ψ(t)〉|2.
The envelope of the overlap function decays with time implying that the initial state is almost
orthogonal to the evolved state. The values of the parameters are same as in Fig. 2 and the
detuning 	 is equal to 0.016061.
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for the decay of overlap is derived by replacing expression exp(−n̄) n̄n

n! with the

Gaussian distribution exp(− (n−n̄)2

2n̄ ) and the sum over n by integration. Further, we
set �n = �N + (N − n)�′

N + �′′
N (N − n)2, with the assumption that N is close

to but not less than n̄. Here, prime denotes taking derivative with respect to n and
the suffix represents the value of n where the derivative is evaluated. With these
approximations we get, after neglecting oscillatory terms,

∞∑
n=0

exp

(
− (n − n̄)2

2n̄

)
cos

(
�nt

2

)
= Re

∫ ∞

0
exp

(
− (n − n̄)2

2n̄
+ i

�nt

2

)
dn

∝
[

1 + N 2 ∂2�n

∂2n
|n=N

t2

4

]− 1
4

× exp

[
−N 2 ∂�n

∂n
|n=N

t2

4

]
(47)

Similar expression can be derived for summation with sin(�n t
2 ). The above expres-

sion indeed predicts that the overlap function decays with time. When N = n̄, the
first derivative of �n vanishes and the exponential term in the envelope is absent.
Consequently the decay is slower. However, if the photon number distribution of
the field is very broad, it is incorrect to truncate the Taylor series and the expression
in Eq. (47) is invalid.

5. SUMMARY

The Hamiltonian that contains the usual and intensity-dependent (including
Kerr term) JC models as limiting cases has been constructed. The importance of the
model is that the nondissipative dynamics dictated by the generalized Hamiltonian
H is completely solvable. The model approximates in various limiting cases many
of the well known and realizable Hamiltonians. The algebra relavant to the model
has been shown to be SU(1,1) or Heisenberg—Weyl algebra depending on whether
k is unity or zero. The eigenvalues of the Hamiltonian exhibits level repulsion. In
the case of nonvanishing Kerr term, the Rabi frequency, which is a function of the
photon number n, attains a minimum. The dynamical behavior of atomic inversion,
when detuning is so chosen so that the Rabi frequency attains its minimum, exhibits
superstructures, which are absent in the usual JC model. The overlap of the initial
coherent state and the time-evolved state decays with time. In the language of
inner product, the initial coherent state of the field is almost orthogonal to its
time-evolved state. The expressions derived in the paper go over to those of the JC
model if k → 0.

We note that the formal equivalence between HJC and H is obtained by
identifying K+ with ā† and K− with ā. This, in conjunction with the fact both the
sets of operators {â†, â, I } and {K±, K0} are closed under commutation, implies
that the expansion coefficients Ce,n(t) and Cg,n(t) for the evolution governed by
H are obtained from the corresponding expressions for the usual JC model by
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replacing 	 by 	n and g by g
√

1 + kn. Hence, all those physical quantities,
like the atomic inversion, quadrature fluctuations, etc., computed in terms of the
expansion coefficients are derivable from those of the JC model.
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